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Abstract

We describe our efforts in the last few years to develop electromagnetic scattering
code using the computers at the DoD High Performance Computing Modernization
Project sites. In particular, a FFT-MOMI technique for the scattering of EM waves from a
perfectly conducting surface will be discussed.

Introduction

Ship self-defense is a major area of concern for the Navy since an expensive asset
(a ship) can be destroyed by an inexpensive (relative to the cost of the ship) sea-
skimming missile. Therefore, the ability to detect incoming sea-skimming cruise missile
is critical. However, detection is very difficult because of multi-path effects from the sea
surface. That is the radar return from the missile contains the radiation that not only
scattered off the missile directly back to the receiver but also scattered off the missile
then off the sea surface before reaching the receiver. The interplay amongst these
scattering mechanisms makes it very difficult to know if there is a target out there. A
secondary problem that is also of interest is the reverse problem, i.e. how does a sea-
skimming cruise missile find its target. The missile in essence has the same problem as
the ship. Therefore, in the end game, the missile must execute a pop-up maneuver to find
its target. This exposes the missile to ship self-defense system, which is undesirable. An
understanding of the sea surface scattering problem therefore will aid in the design of
detection system for both ship and missile.

The scattering of electromagnetic radiation from the sea surface is a
computationally demanding problem because it is an unbounded problem. Particularly, in
the grazing geometry that one encounters in the sea-skimming scenario, the footprint or
illuminated area approaches infinity. In practice, one confines the calculation domain to a
finite surface; however, the surface must be big enough to retain the essential features of
the problem, e.g. shadowing effects. Even then the size of the surface still poses
computationally challenging problems. In this paper, we describe some of our efforts in
the last few years to develop an efficient electromagnetic waves surface scattering code.
The calculations were done using computer resources from the High Performance
Computing Modernization Program centers (ASECC at NUWC, ERDC, and NAVO).

EM Scattering and Integral Equation



An integral formulation is often employed in the solution of the electromagnetic
scattering from a surface. Generally this means that the current on the surface is
expressed in terms of an integral equation from which it is to be determined, i.e.

J = J0 (R) + K(r,r' )J(R' )dS'∫ , (1)

where J is the unknown surface current, J0 is the current generated by the incident field,
K is the kernel, and the integral is over the surface. We have used the notation r = (R,z)
with R = (x,y). The surface to be assumed to be describable by a function
z = ς (x,y) = ς(R) . Once the surface current is determined, the scattered field can be
calculated from it. Solving Eq. (1) is the most demanding part of the scattering problem.
Equation (1) is converted to a matrix equation J = J0 + KJ , and usually some form of
conjugate gradient technique is employed to get the solution. Essentially, an initial guess
to the solution is used to start the conjugate gradient process. This guess is inserted into
the right hand side of the matrix equation to calculate the left hand side. There will be
error, and a correction to the initial guess will be calculated. Then the process repeats
itself until the error reaches a tolerance limit.

The most time consuming step in the above procedure is the matrix-vector
multiplication. Since K is a square matrix with NxN elements and J is a vector with N
elements where N is the number of unknowns, this step requires N2 operations in general.
Consider a surface of the size 100λx100λ where λ is the radiation wavelength. This
surface will have at least N = 106 unknown (this is based upon a conservative
discretization of the surface into 0.1λx0.1λ patches). One can see that this can be very
time consuming. A second aspect of the conjugate gradient method that is undesirable is
the slow convergence,  i.e. it can take hundreds of iteration for the solution to converge.
In this paper, we describe a combination of two techniques to address the above two
issues. The first is a FFT technique to perform the matrix-vector product that scales as
NlnN. This technique was developed by Tsang et al. [1]. The second is a fast convergent
iterative method called the Method of Ordered Multiple Interactions (MOMI) developed
by Kapp and Brown [2]. Also, we discuss how parallel implementation can be done.

FFT Matrix-Vector Multiplication

To illustrate the technique of FFT matrix-vector multiplication [1], we need a
concrete example, so we use here the problem of electromagnetic scattering from a
perfectly conducting surface. Although this is for illustrative purposes, this model can be
useful for radar scattering from ocean surface since it is a good first approximation (radar
does not penetrate very well into the ocean). The surface current,  j = n × H , is given by
the integral equation

j(R) = 2jinc (R) +
1

2π
n(R) ×℘ ∇Go(R,R' ) × j(R' )[ ]∫ d 2R' (2)

where



n = ˆ z − ∇ς (R)[ ] is the surface normal and Go (r,r' ) = exp i ω / c( )r − r'[ ]/ r − r'  is the free
space Green’s function. The idea of FFT matrix-vector multiplication is to express the
integral in Eq. (2) in convolution form for which the product can be done in Fourier
space. For this purpose, the integral is broken into two regions, a near and far region as
defined by a cutoff distance

∇Go (R, R' ) × j(R' )[ ]∫ d2 R' = ∇Go(R, R' ) × j(R' )[ ]d 2R'
R −R' < cutoff

∫

+ ∇Go(R,R' ) × j(R' )[ ]d 2R'
R− R' ≥cutoff

∫
. (3)

The second integral on the right hand side of Eq. (3) is called the far region, and it will be
rewritten in convolution form by expanding the kernel in a Taylor series around the point
α ≡ ς(R) − ς (R' )[ ]2 = 0. Using the definition for the Green’s function G0 and

r− r' = R − R'( )2 + ς R( ) − ς R'( )[ ]2
 we get

∇G0 (r,r' ) =
1
n!

dn ∇G0 (r,r' )[ ]
dα n

n= 0

∞

∑
α =0

α n . (4)

The Taylor series is truncated at some n. Expanding the term αn we get terms of the form
ς(R)j ς(R' )k , while the derivative term has only the dependence R − R'  (since it is
evaluated at α = 0). Substituting Eq. (4) into the second term on the right hand side of Eq.
(3), we get various terms of the convolution form

f (R)g(R − R' )h(R' )dR'∫ . (5)

Integral of the convolution form can be done by FFT to Fourier space where the
convolution is just a product that can be done in N operation. The NlnN scaling comes
from the FFT itself.

The first integral in the right hand side of Eq. (3), corresponding to the near
region, is calculated the standard way, i.e. no convolution. Therefore, to minimize the
near region calculation, the cutoff distance is chosen so that this region is small compared
to the far region. The choice of the cutoff distance will of course effect the Taylor
expansion. It determines how many terms to keep in the Taylor series expansion to
achieve a specific error tolerance.

Method of Ordered Multiple Interaction (MOMI)

In this section we describe the Method of Ordered Multiple Interactions (MOMI)
[2], how it can be parallelized, and how the FFT matrix-vector approach can be



incorporated. Unlike the conjugate gradient approach, the MOMI utilizes a Neumann
iteration technique. In this approach, the incident current is taken as the initial guess. The
unknown surface current is then calculated. This current is then used as the next guess,
i.e. J n = J inc + KJ n−1 . The solution obtained this way can be written as a series,

   J = J inc + KJ inc + K2Jinc + K3Jinc +K (6)

The MOMI uses the Neumann iteration on a modified form of the matrix equation. First,
the kernel K is broken into a lower and upper matrix K = L + U. Note that we assume
there is no diagonal part D because this can always be separated, bought over to the left
hand side, and renormalize everything by (I-D). The matrix equation can now be written
in terms of the L and U matrices as follows

J = I − U( )−1 I − L( )−1J inc + I − U( )−1 I − L( )−1LUJ . (7)

Applying the Neumann iteration to Eq. (7) we get the series solution

J = I − U( )−1
I + I − L( )−1

LU I − U( )−1{ }n

n =1

∞

∑ 
  

 
  I − L( )−1

J inc . (8)

Coupled with the identities I − L( )−1L = I − L( )−1 − I  and U I − U( )−1 = I − U( )−1 − I , the
solution for the surface current is given now in terms of two matrices I − L( )−1  and
I − U( )−1 only. Although these two matrices require an inversion, there is no need for

explicitly calculating them because they are always multiplied with a vector, which can
be done using forward and backward substitution. To illustrate this point, let us look at
how to evaluate X = I − L( )−1 A  where A is a known vector. This equation is equivalent
to I − L( )X = A . Because of the nature of the matrix L (a lower triangular matrix), we
get the following set of equations

  

X1 = A1

X2 = A2 + L21X1

X3 = A3 + L32 X2 + L31X1

M

Xn = An + Lnm Xm
m< n
∑

(9)

From Eq. (9) we see that we can calculate the mth element if we know all the element
preceeding it. Starting from the first element, whose solution is trivial, we can
sequentially determine the rest (hence the name forward substitution). For the other
matrix I − U( )−1, the same is true except the order is reversed, i.e. we start from the last
element and work backward (backward substitution).



The operation count of Eq. (9) is of order N2. However, most of these can be
performed in parallel. To see this, note that once X1 is known the product Lm1X1 for all m
can be calculated in parallel. This is how we implement the MOMI solution to take
advantage of the parallel computer. The reason we use the solution given by Eq. (8)
instead of that of Eq. (6) is that the former converges faster for the same amount of
computational efforts. To understand the origin for this, let us look at the physical
interpretation of the terms in both equations.

The successive term on the right hand side of Eq. (6) describes a unique scattering
process on the surface. The first term is just the current due to the incident wave. The
second term corresponds to current due to the singly scattered waves from another point
on the surface. The term K nJ inc describes the current due to n-scattered waves. Now let
us look at Eq. (8). As stated before, this series solution is expressible in terms of only two
matrices, I − L( )−1 ≡ I + L  and I − U( )−1 ≡ I + U . For interpretational purposes, we have
defined two new matrices L  and U . What is the physical meaning of these two new
matrices? From their definition, we can solve for them in terms of L and U, but their
meaning can be understood most easily from the diagrams in Fig. (1). Unlike the matrix
L or U, where each instance of occurrence of either one corresponds to an additional
scattering between two points on the surface, each occurrence of L  or U  corresponds to
a set of scattering processes. Between two points, the L (U) matrix represents all possible
scattering processes going forward (backward). The only restriction is that in either case,
reversal of direction is not allowed. This restriction is why the method is known as the
Method of Ordered Multiple Interactions (MOMI). The top diagram in Fig. (1) shows the
matrix element (blue line) corresponding to L (left diagram) and U (right diagram)
connecting two elements of a vector J. Below these diagrams are the equivalent
description in terms of the L and U matrices (red lines). Note that we have shown only
two possible processes to illustrate our point. To get the true equivalent, we must include
all possible ways to go between the two points without reversing the arrow direction.
This explains why the MOMI solution is more robust than that of Eq. (6). The first term
in Eq. (8), which is called the Born term, can be written in terms of the L and U matrices
as

J born = (I + U)(I + L)Jinc . (10)

With the interpretation of the two matrices described in Fig. (1), we see that even this
term already includes many more scattering processes; some of these are included only
after many iterations of Eq. (6).

FFT-MOMI

In this section, we describe how the FFT matrix-vector multiplication can be
combined with the MOMI. To see how this can be accomplished, let us look at how to
calculateX = I − L( )−1 A  again, but this time we re-express it in terms of sub-vectors, i.e.
X = xm

m
∑ . In terms of these sub-vectors, we get an equation analogous to Eq. (9)



x n = I − Lnn( )−1
an + L nmx m

m< n
∑ 

  
 
  . (11)

The second term in the square bracket of Eq. (10) is now a matrix-vector product which
the FFT technique can be applied. The next question we need to address is how to define
the sub-vectors so that the FFT technique can be applied. Since the convolution integral
in the FFT technique requires a well-defined distance vector (R-R’), a natural sub-vector
is a subsection of the surface. A simple scheme then is to divide the surface into square
sections and to assign each section to a sub-vector. The remaining question is how to
number these regions. We found the following numbering scheme (as shown in Fig. (2))
the most economical in terms of keeping the number and size of the FFT to a minimal. As
shown in Fig. (2), the surface is divided into 4 sections. Each section is then divided into
4 again. This is repeated until a desired size is reached.  The numbering starts with the
smallest unit. They are numbered consecutively until one reaches a larger region. This
region is now one fourth of a larger region. The numbering continues on the other 3/4 of
this larger region as shown in Fig. (2). This process is continued to larger level. Equation
(11) would be calculated as follows. The first region x1 is calculated by forward
substitution. Then the product L21x1 , L31x1 , and L41x1  are calculated using FFT. The rest
of the procedure is the same keeping in mind that at any step the FFT size should be
minimized.

Sample Calculation and Discussion

In this section we give some results us ing the above method to calculate the
scattering of electromagnetic waves from a randomly rough perfectly conducting surface.
The random surface is generated using the algorithm in ref. [3]. The root mean square
height of the surface is σ = 0.75λ, and the lateral correlation length is a = 2.0λ where λ is
the radiation wavelength. The surface is of the size 25.6λx25.6λ. The surface is
discretized into 0.1λx0.1λ patches. The incident field is a sum of plane waves [4] with a
nominal incident angle of 45o. The incident field is p-polarized. The differential reflection
coefficient (DRC) or the scattered power per solid angle dP(ϑ ,φ) /dΩ  normalized to the
incident power is calculated and shown in Fig. (3). In Fig. (3a), we show the in-plane (φ =
0o) co-polarized DRC calculated from the Born term, i.e. Eq. (10). Two different
calculations are shown. The black curve corresponds to the case where the surface is not
divided into sub sections and no FFT matrix-vector calculation was used. The red curve
corresponds to the case where the surface is divided into 64 sub regions as shown in Fig.
(2).  In Fig. (3b), we shown the DRC calculated from 3 iterations of Eq. (8). There are
several points to note. Even though the DRC shows some discrepancies, when comparing
both cases, with only the Born term, they both converge to the same DRC after 3
iterations. The convergence rate of 3 iterations with 3 digit accuracy is very fast
(illustrating the advantage of the MOMI). Comparison of Figs. (3a) and (3b) shows that
the DRC based upon Born term is quite good.

For the above calculations, the FFT-MOMI required longer CPU time compare to
the MOMI because there is FFT overhead that must be overcomed. We have looked at



the scaling of the FFT-MOMI as a function of N, and it is slightly larger than the NlnN.
We were able to exploit the inherent parallel nature of the forward and backward
substitution and take advantage of parallel computers. Unfortunately, we have not
employed a parallel FFT routine. Having a parallel FFT routine would significantly
enhance the FFT-MOMI as FFT is the dominant time consuming steps in the process.

In conclusion, we have described a problem of interest to the Navy, the detection
of sea-skimming cruise missile, that stands to benefit from the computers being made
available through High Performance Computing Modernization Program. This problem
requires an understanding of the scattering of electromagnetic radiation from sea surface,
and the computers from the HPCMP provide a tool for the modeling of this problem.

Acknowledgement

We thank the HPCMP, in particular ASECC at NUWC, ERDC, and NAVO, for
computer times.

References

[1] L. Tsang, C. H. Chan, and K. Pak, “Monte Carlo simulation of a two-dimensional
random rough surface using the sparse-matrix flat-surface iterative approach,” Electron.
Lett. vol. 29, pp. 1153-1154 (1993); L. Tsang, C. H. Chan, and K. Pak, “Backscattering
enhancement of a two-dimensional, random rough surface (three-dimensional scattering)
based on Monte Carlo simulations,” J. Opt. Soc. Am. A vol. 11, pp. 711-715 (1994).
[2] D. A. Kapp and G. S. Brown, “A New numerical method for rough surface scattering
calculations,” IEEE Trans. Antennas Propagat. vol. 44, pp. 711-721 (1996).
[3] N. Garcia and E. Stoll, “Monte Carlo calculation for electromagnetic wave scattering
from random rough surface,” Phys. Rev. Lett. vol. 52, pp. 1798-1801 (1984).
[4] P. Tran and A. A. Maradudin, “The scattering of electromagnetic waves from a
randomly rough 2-D metallic surface,” Opt. Comm. vol. 110, pp. 269-273 (1994).



Figure Captions

Figure 1: Diagrammatic description of the matrix L (top left diagram) and U (top right
diagram). The dot represents the elements of the vector J. The blue line with arrow
represents the matrix element L and U. The lower diagrams show the equivalent (red
lines) in terms of the matrix L (left diagram) and U (right diagram). Note that only two
possible processes are shown in the lower diagrams. The true equivalent would be all
possible paths connecting two points with the restriction that all arrows must point the
same direction.
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Figure 2: Diagram of how the surface is divided into sub regions and numbered for the
FFT-MOMI algorithm.
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Figure 3: Plot of the Differential Reflection Coefficient (DRC) (a) from the Born term
only and (b) from 3 iterations of Eq. (8). The red curve corresponds to the FFT-MOMI
with the surface divided into 64 sub regions, and the black curve corresponds to the
MOMI (no subdivision of the surface). The two curves are indistinguishable in (b).
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